The effect of suture coated with mesenchymal stem cells and bioactive substrate on tendon repair strength in a rat model.
نویسندگان
چکیده
PURPOSE Exogenously administered mesenchymal stem cells and bioactive molecules are known to enhance tendon healing. Biomolecules have been successfully delivered using sutures that elute growth factors over time. We sought to evaluate the histologic and biomechanical effect of delivering both cells and bioactive substrates on a suture delivery vehicle in comparison with sutures coated with bioactive substrates alone. METHODS Bone marrow-derived stem cells were harvested from Sprague-Dawley rat femurs. Experimental cell and substrate-coated, coated suture (CS) group sutures were precoated with intercellular cell adhesion molecule 1 and poly-L-lysine and seeded with labeled bone marrow-derived stem cells. Control (substrate-only [SO] coated) group sutures were coated with intercellular cell adhesion molecule 1 and poly-L-lysine only. Using a matched-paired design, bilateral Sprague-Dawley rat Achilles tendons (n = 105 rats) were transected and randomized to CS or SO repairs. Tendons were harvested at 4, 7, 10, 14, and 28 days and subjected to histologic and mechanical assessment. RESULTS Labeled cells were present at repair sites at all time points. The CS suture repairs displayed statistically greater strength compared to SO repairs at 7 days (12.6 ± 5.0 N vs 8.6 ± 3.7 N, respectively) and 10 days (21.2 ± 4.9 N vs 16.4 ± 4.8 N, respectively). There was no significant difference between the strength of CS suture repairs compared with SO repairs at 4 days (8.1 ± 5.1 N vs 6.6 ± 2.3 N, respectively), 14 days (22.8 ± 7.3 N vs 25.1 ± 9.7 N, respectively), and 28 days (40.9 ± 12.4 N vs 34.6 ± 15.0 N, respectively). CONCLUSIONS Bioactive CS sutures enhanced repair strength at 7 to 10 days. There was no significant effect at later stages. CLINICAL RELEVANCE The strength nadir of a tendon repair occurs in the first 2 weeks after surgery. Bioactive suture repair might provide a clinical advantage by jump-starting the repair process during this strength nadir. Improved early strength might, in turn allow earlier unprotected mobilization.
منابع مشابه
Use of Undifferentiated Cultured Bone Marrow-Derived Mesenchymal Stem Cells for DDF Tendon Injuries Repair in Rabbits: A Quantitative and Qualitative Histopathological Study
Objective- To investigate the effect of intratendinous injection of bMSCs on the rate and extent of tendon healing after primary repair in a rabbit model. Design- Experimental study. Animals- Twenty seven skeletally mature New Zealand white rabbits weighing 1.8- 2.5 kg were used. Twenty rabbits were used as the experimental animals, and seven others were used as a source of bone marrow-derived ...
متن کاملThe effect of aquatic activity and alogenic bone marrow derived mesenchymal stem cells fortified with Platelet-Rich Plasma in treatment of Achilles tendon in rat
The aim of this study was to the effect of aquatic activity and alogenic bone marrow derived mesenchymal stem cells fortified with Platelet-Rich Plasma in treatment of Achilles tendon in rat. 74 Sprague-Dawley rats were selected and tendon injury was formed in 69 of them. Subsequently, these rats were randomly divided into 8 groups and 5 rats which were without any injuries were chosen as the ...
متن کاملStem Cell Bone Differentiation on Polyol Lactic Acid Composite Nanoparticles Containing 45S5 Bioactive Glass Nanoparticles
Abstract Background and Objectives Now day, using of stem cells and nanoparticles in the differentiation of stem cells is considered as a therapeutic approach. The purpose of this study was to synthesize and characterize nanocomposite polyacrylic polycarboxylic acid containing nanoparticles of biologically active glass 45S5 crushed and assessment effect of this composite on the propagation and...
متن کاملOsteogenic Differentiation of Mesenchymal Stem Cells Via Osteoblast- Imprinted Substrate: In Vitro and In Vivo Evaluation in Rat Model
BACKGROUND: Stem cells have great effects in clinical cell-based therapy. Accordingly, controlling the behavior and directing the fate of stem cells cultured in the laboratory is an important issue. OBJECTIVES: The aim of this study was to evaluate osteogenic properties of adipose derived mesenchymal stem cells (ADSCs) which differentiated toward osteogenic linage by osteoblast-imprinted substr...
متن کاملThe Effect of Mesenchymal Stem Cells and Aqueous Extract of Elaeagnus Angustifolia on the Mechanical Properties of Articular Cartilage in an Experimental Model of Rat Osteoarthritis
Introduction: Although, the effect of direct intra-articular injection of bone marrow stem cells (BMSCs) on the repair of articular cartilage and the effect of Elaeagnus angustifolia extract on pain relief in patients with osteoarthritis have been investigated, no studies has been conducted to compare the effects of these two therapeutic methods on the mechanical properties of articular cartila...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of hand surgery
دوره 37 8 شماره
صفحات -
تاریخ انتشار 2012